Concurrency and parallelism are often conflated, but they're fundamentally different concepts. After implementing trading systems in all these languages, I've learned the strengths and pitfalls of each approach. This article compares how C++, Rust, OCaml, Python, and TypeScript handle concurrent and parallel execution.
Concurrency: Dealing with multiple things at once (structure) Parallelism: Doing multiple things at once (execution)
A concurrent system may run on a single core (time-slicing), while a parallel system requires multiple cores. Trading systems need both: concurrent handling of orders, market data, and risk checks, plus parallel processing of backtests and analytics.
C++ offers complete control over threading, synchronization, and memory ordering.
1#include <thread>
2#include <mutex>
3#include <condition_variable>
4#include <queue>
5#include <atomic>
6#include <vector>
7
8// Thread-safe queue for work distribution
9template<typename T>
10class ConcurrentQueue {
11private:
12 std::queue<T> queue_;
13 mutable std::mutex mutex_;
14 std::condition_variable cv_;
15 std::atomic<bool> done_{false};
16
17public:
18 void push(T value) {
19 {
20 std::lock_guard<std::mutex> lock(mutex_);
21 queue_.push(std::move(value));
22 }
23 cv_.notify_one();
24 }
25
26 bool try_pop(T& value) {
27 std::unique_lock<std::mutex> lock(mutex_);
28 cv_.wait(lock, [this] {
29 return !queue_.empty() || done_.load();
30 });
31
32 if (queue_.empty()) {
33 return false;
34 }
35
36 value = std::move(queue_.front());
37 queue_.pop();
38 return true;
39 }
40
41 void finish() {
42 done_.store(true);
43 cv_.notify_all();
44 }
45};
46
47// Worker pool for parallel task execution
48class ThreadPool {
49private:
50 std::vector<std::thread> workers_;
51 ConcurrentQueue<std::function<void()>> tasks_;
52 std::atomic<size_t> active_tasks_{0};
53
54public:
55 explicit ThreadPool(size_t num_threads) {
56 for (size_t i = 0; i < num_threads; ++i) {
57 workers_.emplace_back([this] {
58 std::function<void()> task;
59 while (tasks_.try_pop(task)) {
60 active_tasks_++;
61 task();
62 active_tasks_--;
63 }
64 });
65 }
66 }
67
68 ~ThreadPool() {
69 tasks_.finish();
70 for (auto& worker : workers_) {
71 if (worker.joinable()) {
72 worker.join();
73 }
74 }
75 }
76
77 template<typename F>
78 void submit(F&& task) {
79 tasks_.push(std::forward<F>(task));
80 }
81
82 void wait_idle() {
83 while (active_tasks_.load(std::memory_order_acquire) > 0) {
84 std::this_thread::yield();
85 }
86 }
87};
88
89// Example: Parallel order book processing
90struct Order {
91 uint64_t id;
92 std::string symbol;
93 double price;
94 int quantity;
95};
96
97class OrderProcessor {
98private:
99 ThreadPool pool_;
100 std::unordered_map<std::string, std::vector<Order>> results_;
101 std::mutex results_mutex_;
102
103public:
104 explicit OrderProcessor(size_t num_threads) : pool_(num_threads) {}
105
106 void process_orders(const std::vector<Order>& orders) {
107 // Partition by symbol for parallel processing
108 std::unordered_map<std::string, std::vector<Order>> partitions;
109
110 for (const auto& order : orders) {
111 partitions[order.symbol].push_back(order);
112 }
113
114 // Submit tasks for each symbol
115 for (const auto& [symbol, symbol_orders] : partitions) {
116 pool_.submit([this, symbol, symbol_orders] {
117 auto processed = process_symbol_orders(symbol_orders);
118
119 std::lock_guard<std::mutex> lock(results_mutex_);
120 results_[symbol] = std::move(processed);
121 });
122 }
123
124 pool_.wait_idle();
125 }
126
127private:
128 std::vector<Order> process_symbol_orders(
129 const std::vector<Order>& orders) {
130 // Heavy processing per symbol
131 std::vector<Order> result;
132 for (const auto& order : orders) {
133 // Validate, enrich, route...
134 result.push_back(order);
135 }
136 return result;
137 }
138};
1391#include <coroutine>
2#include <optional>
3#include <iostream>
4
5// Simple async task
6template<typename T>
7class Task {
8public:
9 struct promise_type {
10 T value_;
11 std::exception_ptr exception_;
12
13 Task get_return_object() {
14 return Task{
15 std::coroutine_handle<promise_type>::from_promise(*this)
16 };
17 }
18
19 std::suspend_never initial_suspend() { return {}; }
20 std::suspend_always final_suspend() noexcept { return {}; }
21
22 void return_value(T value) {
23 value_ = std::move(value);
24 }
25
26 void unhandled_exception() {
27 exception_ = std::current_exception();
28 }
29 };
30
31 std::coroutine_handle<promise_type> handle_;
32
33 explicit Task(std::coroutine_handle<promise_type> h) : handle_(h) {}
34
35 ~Task() {
36 if (handle_) handle_.destroy();
37 }
38
39 T get() {
40 if (handle_.promise().exception_) {
41 std::rethrow_exception(handle_.promise().exception_);
42 }
43 return handle_.promise().value_;
44 }
45};
46
47// Example: Async market data fetcher
48Task<double> fetch_price_async(const std::string& symbol) {
49 // Simulate async I/O
50 co_await std::suspend_always{};
51
52 // In reality, would fetch from exchange API
53 double price = 100.0 + (symbol.length() % 10);
54
55 co_return price;
56}
57
58Task<double> calculate_portfolio_value() {
59 double total = 0.0;
60
61 total += co_await fetch_price_async("AAPL");
62 total += co_await fetch_price_async("GOOGL");
63 total += co_await fetch_price_async("MSFT");
64
65 co_return total;
66}
67Rust's ownership system prevents data races at compile time.
1use std::sync::{Arc, Mutex};
2use std::thread;
3use std::sync::mpsc;
4use rayon::prelude::*;
5
6// Thread-safe order book
7#[derive(Debug, Clone)]
8struct Order {
9 id: u64,
10 symbol: String,
11 price: f64,
12 quantity: i32,
13}
14
15struct OrderBook {
16 orders: Arc<Mutex<Vec<Order>>>,
17}
18
19impl OrderBook {
20 fn new() -> Self {
21 OrderBook {
22 orders: Arc::new(Mutex::new(Vec::new())),
23 }
24 }
25
26 fn add_order(&self, order: Order) {
27 let mut orders = self.orders.lock().unwrap();
28 orders.push(order);
29 }
30
31 fn get_orders(&self) -> Vec<Order> {
32 let orders = self.orders.lock().unwrap();
33 orders.clone()
34 }
35}
36
37// Example: Multi-threaded order processing
38fn process_orders_concurrent(orders: Vec<Order>) -> Vec<Order> {
39 let order_book = OrderBook::new();
40 let mut handles = vec![];
41
42 // Chunk orders for parallel processing
43 let chunk_size = orders.len() / 4;
44 for chunk in orders.chunks(chunk_size) {
45 let book = order_book.clone();
46 let chunk = chunk.to_vec();
47
48 let handle = thread::spawn(move || {
49 for order in chunk {
50 // Process order
51 book.add_order(order);
52 }
53 });
54
55 handles.push(handle);
56 }
57
58 // Wait for all threads
59 for handle in handles {
60 handle.join().unwrap();
61 }
62
63 order_book.get_orders()
64}
65
66// Channel-based pipeline
67fn pipeline_example() {
68 let (tx1, rx1) = mpsc::channel();
69 let (tx2, rx2) = mpsc::channel();
70
71 // Stage 1: Data ingestion
72 thread::spawn(move || {
73 for i in 0..1000 {
74 tx1.send(Order {
75 id: i,
76 symbol: "AAPL".to_string(),
77 price: 150.0 + (i as f64 * 0.01),
78 quantity: 100,
79 }).unwrap();
80 }
81 });
82
83 // Stage 2: Validation
84 thread::spawn(move || {
85 while let Ok(order) = rx1.recv() {
86 if order.price > 0.0 && order.quantity > 0 {
87 tx2.send(order).unwrap();
88 }
89 }
90 });
91
92 // Stage 3: Execution
93 thread::spawn(move || {
94 while let Ok(order) = rx2.recv() {
95 println!("Executing order: {:?}", order.id);
96 }
97 });
98}
991use tokio::time::{sleep, Duration};
2use tokio::task;
3use std::sync::Arc;
4use tokio::sync::Mutex;
5
6// Async order book
7struct AsyncOrderBook {
8 orders: Arc<Mutex<Vec<Order>>>,
9}
10
11impl AsyncOrderBook {
12 fn new() -> Self {
13 AsyncOrderBook {
14 orders: Arc::new(Mutex::new(Vec::new())),
15 }
16 }
17
18 async fn add_order(&self, order: Order) {
19 let mut orders = self.orders.lock().await;
20 orders.push(order);
21 }
22
23 async fn get_count(&self) -> usize {
24 let orders = self.orders.lock().await;
25 orders.len()
26 }
27}
28
29// Async market data fetcher
30async fn fetch_market_data(symbol: &str) -> f64 {
31 // Simulate network delay
32 sleep(Duration::from_millis(100)).await;
33
34 // Return mock price
35 100.0 + (symbol.len() as f64)
36}
37
38// Concurrent async tasks
39async fn process_multiple_symbols() {
40 let symbols = vec!["AAPL", "GOOGL", "MSFT", "AMZN"];
41
42 // Launch all fetches concurrently
43 let mut handles = vec![];
44
45 for symbol in symbols {
46 let handle = task::spawn(async move {
47 let price = fetch_market_data(symbol).await;
48 println!("{}: ${}", symbol, price);
49 price
50 });
51 handles.push(handle);
52 }
53
54 // Wait for all to complete
55 let mut total = 0.0;
56 for handle in handles {
57 total += handle.await.unwrap();
58 }
59
60 println!("Total portfolio value: ${}", total);
61}
62
63// Parallel data processing with Rayon
64fn parallel_backtest(prices: Vec<f64>) -> Vec<f64> {
65 prices
66 .par_iter()
67 .map(|&price| {
68 // Simulate heavy computation
69 (0..1000).fold(price, |acc, _| acc * 1.0001)
70 })
71 .collect()
72}
731use std::sync::atomic::{AtomicU64, Ordering};
2use crossbeam::queue::ArrayQueue;
3
4// Lock-free counter for high-frequency updates
5struct LockFreeCounter {
6 count: AtomicU64,
7}
8
9impl LockFreeCounter {
10 fn new() -> Self {
11 LockFreeCounter {
12 count: AtomicU64::new(0),
13 }
14 }
15
16 fn increment(&self) -> u64 {
17 self.count.fetch_add(1, Ordering::Relaxed)
18 }
19
20 fn get(&self) -> u64 {
21 self.count.load(Ordering::Relaxed)
22 }
23}
24
25// Lock-free queue for order flow
26fn lockfree_order_queue_example() {
27 let queue = Arc::new(ArrayQueue::new(1024));
28 let queue_clone = queue.clone();
29
30 // Producer thread
31 let producer = thread::spawn(move || {
32 for i in 0..1000 {
33 let order = Order {
34 id: i,
35 symbol: "AAPL".to_string(),
36 price: 150.0,
37 quantity: 100,
38 };
39
40 while queue_clone.push(order.clone()).is_err() {
41 thread::yield_now();
42 }
43 }
44 });
45
46 // Consumer thread
47 let consumer = thread::spawn(move || {
48 let mut count = 0;
49 while count < 1000 {
50 if let Some(order) = queue.pop() {
51 println!("Processed order {}", order.id);
52 count += 1;
53 } else {
54 thread::yield_now();
55 }
56 }
57 });
58
59 producer.join().unwrap();
60 consumer.join().unwrap();
61}
62OCaml 5.0 introduced multicore support with effect handlers and domains.
1(* Parallel map using domains *)
2let parallel_map f list num_domains =
3 let module D = Domain in
4 let len = List.length list in
5 let chunk_size = (len + num_domains - 1) / num_domains in
6
7 let rec chunks acc lst n =
8 if n <= 0 || lst = [] then List.rev acc
9 else
10 let chunk, rest = List.split_n lst chunk_size in
11 chunks (chunk :: acc) rest (n - 1)
12 in
13
14 let list_chunks = chunks [] list num_domains in
15
16 let process_chunk chunk =
17 D.spawn (fun () -> List.map f chunk)
18 in
19
20 let domains = List.map process_chunk list_chunks in
21 let results = List.map D.join domains in
22 List.concat results
23
24(* Example: Parallel order processing *)
25type order = {
26 id : int;
27 symbol : string;
28 price : float;
29 quantity : int;
30}
31
32let process_order order =
33 (* Heavy processing *)
34 { order with price = order.price *. 1.01 }
35
36let process_orders_parallel orders =
37 parallel_map process_order orders 4
38
39(* Concurrent order book *)
40module OrderBook = struct
41 type t = {
42 mutable orders : order list;
43 mutex : Mutex.t;
44 }
45
46 let create () = {
47 orders = [];
48 mutex = Mutex.create ();
49 }
50
51 let add_order book order =
52 Mutex.lock book.mutex;
53 book.orders <- order :: book.orders;
54 Mutex.unlock book.mutex
55
56 let get_orders book =
57 Mutex.lock book.mutex;
58 let orders = book.orders in
59 Mutex.unlock book.mutex;
60 orders
61end
62
63(* Effect handlers for async operations *)
64type _ Effect.t +=
65 | Fetch_price : string -> float Effect.t
66 | Sleep : float -> unit Effect.t
67
68let fetch_portfolio_value symbols =
69 let open Effect.Deep in
70 let rec loop acc = function
71 | [] -> acc
72 | symbol :: rest ->
73 let price = perform (Fetch_price symbol) in
74 loop (acc +. price) rest
75 in
76 loop 0.0 symbols
77
78(* Effect handler implementation *)
79let run_with_effects f =
80 let open Effect.Deep in
81 match_with f ()
82 { retc = (fun x -> x);
83 exnc = raise;
84 effc = (fun (type a) (eff : a Effect.t) ->
85 match eff with
86 | Fetch_price symbol ->
87 Some (fun (k : (a, _) continuation) ->
88 (* Simulate price fetch *)
89 let price = 100.0 +. float_of_int (String.length symbol) in
90 continue k price)
91 | Sleep duration ->
92 Some (fun (k : (a, _) continuation) ->
93 Unix.sleepf duration;
94 continue k ())
95 | _ -> None)
96 }
971open Lwt.Syntax
2
3(* Async market data fetcher *)
4let fetch_price symbol =
5 let* () = Lwt_unix.sleep 0.1 in
6 Lwt.return (100.0 +. float_of_int (String.length symbol))
7
8(* Concurrent operations *)
9let fetch_multiple_prices symbols =
10 let tasks = List.map fetch_price symbols in
11 Lwt.all tasks
12
13(* Example usage *)
14let calculate_portfolio_value () =
15 let* prices = fetch_multiple_prices ["AAPL"; "GOOGL"; "MSFT"] in
16 let total = List.fold_left (+.) 0.0 prices in
17 Lwt_io.printf "Total value: %.2f\n" total
18
19(* Lwt promise pipeline *)
20let order_pipeline () =
21 let* raw_order = fetch_order_from_exchange () in
22 let* validated_order = validate_order raw_order in
23 let* enriched_order = enrich_order validated_order in
24 let* () = send_to_execution enriched_order in
25 Lwt.return ()
26Python's Global Interpreter Lock (GIL) limits true parallelism for CPU-bound tasks.
1import threading
2import queue
3import time
4from typing import List, Dict
5from dataclasses import dataclass
6
7@dataclass
8class Order:
9 id: int
10 symbol: str
11 price: float
12 quantity: int
13
14class ThreadSafeOrderBook:
15 def __init__(self):
16 self.orders: List[Order] = []
17 self.lock = threading.Lock()
18
19 def add_order(self, order: Order):
20 with self.lock:
21 self.orders.append(order)
22
23 def get_orders(self) -> List[Order]:
24 with self.lock:
25 return self.orders.copy()
26
27# Thread pool for I/O operations
28class OrderProcessor:
29 def __init__(self, num_threads: int = 4):
30 self.num_threads = num_threads
31 self.task_queue = queue.Queue()
32 self.result_queue = queue.Queue()
33 self.workers = []
34
35 def worker(self):
36 while True:
37 task = self.task_queue.get()
38 if task is None:
39 break
40
41 # Process task (e.g., fetch from API)
42 result = self.process_order(task)
43 self.result_queue.put(result)
44 self.task_queue.task_done()
45
46 def process_order(self, order: Order) -> Order:
47 # Simulate I/O operation
48 time.sleep(0.01)
49 return order
50
51 def start(self):
52 for _ in range(self.num_threads):
53 t = threading.Thread(target=self.worker)
54 t.start()
55 self.workers.append(t)
56
57 def submit(self, order: Order):
58 self.task_queue.put(order)
59
60 def stop(self):
61 for _ in range(self.num_threads):
62 self.task_queue.put(None)
63 for worker in self.workers:
64 worker.join()
651import multiprocessing as mp
2from multiprocessing import Pool, Manager
3import numpy as np
4
5def calculate_indicators(prices: np.ndarray) -> Dict[str, float]:
6 """CPU-intensive calculation"""
7 return {
8 'sma_20': np.mean(prices[-20:]),
9 'sma_50': np.mean(prices[-50:]),
10 'volatility': np.std(prices[-20:]),
11 'momentum': prices[-1] - prices[-20]
12 }
13
14def parallel_backtest(symbols: List[str], num_processes: int = 4):
15 """Parallel backtesting across symbols"""
16 with Pool(num_processes) as pool:
17 # Generate mock data for each symbol
18 data = [(symbol, np.random.randn(1000) * 10 + 100)
19 for symbol in symbols]
20
21 # Map calculation across processes
22 results = pool.starmap(process_symbol, data)
23
24 return dict(zip(symbols, results))
25
26def process_symbol(symbol: str, prices: np.ndarray) -> Dict:
27 indicators = calculate_indicators(prices)
28 return {
29 'symbol': symbol,
30 'indicators': indicators
31 }
32
33# Shared memory for inter-process communication
34def shared_memory_example():
35 manager = Manager()
36 shared_dict = manager.dict()
37 shared_list = manager.list()
38
39 def worker(worker_id, shared_dict, shared_list):
40 shared_dict[worker_id] = f"Worker {worker_id} data"
41 shared_list.append(worker_id)
42
43 processes = []
44 for i in range(4):
45 p = mp.Process(target=worker, args=(i, shared_dict, shared_list))
46 p.start()
47 processes.append(p)
48
49 for p in processes:
50 p.join()
51
52 print(f"Shared dict: {dict(shared_dict)}")
53 print(f"Shared list: {list(shared_list)}")
541import asyncio
2import aiohttp
3from typing import List
4
5class AsyncMarketDataFetcher:
6 def __init__(self):
7 self.session = None
8
9 async def __aenter__(self):
10 self.session = aiohttp.ClientSession()
11 return self
12
13 async def __aexit__(self, exc_type, exc_val, exc_tb):
14 await self.session.close()
15
16 async def fetch_price(self, symbol: str) -> float:
17 # Simulate API call
18 await asyncio.sleep(0.1)
19 return 100.0 + len(symbol)
20
21 async def fetch_multiple_prices(self, symbols: List[str]) -> Dict[str, float]:
22 tasks = [self.fetch_price(symbol) for symbol in symbols]
23 prices = await asyncio.gather(*tasks)
24 return dict(zip(symbols, prices))
25
26# Async order processing pipeline
27async def order_pipeline():
28 queue = asyncio.Queue()
29
30 async def producer():
31 for i in range(100):
32 order = Order(i, "AAPL", 150.0, 100)
33 await queue.put(order)
34 await queue.put(None) # Sentinel
35
36 async def consumer(consumer_id):
37 while True:
38 order = await queue.get()
39 if order is None:
40 queue.task_done()
41 break
42
43 # Process order
44 await asyncio.sleep(0.01)
45 print(f"Consumer {consumer_id} processed order {order.id}")
46 queue.task_done()
47
48 # Start pipeline
49 prod_task = asyncio.create_task(producer())
50 consumer_tasks = [asyncio.create_task(consumer(i)) for i in range(4)]
51
52 await prod_task
53 await queue.join()
54
55 # Signal consumers to stop
56 for _ in range(4):
57 await queue.put(None)
58
59 await asyncio.gather(*consumer_tasks)
60
61# Run async code
62async def main():
63 async with AsyncMarketDataFetcher() as fetcher:
64 prices = await fetcher.fetch_multiple_prices(
65 ["AAPL", "GOOGL", "MSFT", "AMZN"]
66 )
67 print(f"Prices: {prices}")
68
69# asyncio.run(main())
70TypeScript (Node.js) uses single-threaded event loop with async I/O.
1interface Order {
2 id: number;
3 symbol: string;
4 price: number;
5 quantity: number;
6}
7
8class MarketDataFetcher {
9 async fetchPrice(symbol: string): Promise<number> {
10 // Simulate API call
11 await new Promise(resolve => setTimeout(resolve, 100));
12 return 100 + symbol.length;
13 }
14
15 async fetchMultiplePrices(symbols: string[]): Promise<Map<string, number>> {
16 const pricePromises = symbols.map(async symbol => {
17 const price = await this.fetchPrice(symbol);
18 return [symbol, price] as [string, number];
19 });
20
21 const results = await Promise.all(pricePromises);
22 return new Map(results);
23 }
24
25 // Parallel with concurrency limit
26 async fetchWithLimit(
27 symbols: string[],
28 limit: number
29 ): Promise<Map<string, number>> {
30 const results = new Map<string, number>();
31
32 for (let i = 0; i < symbols.length; i += limit) {
33 const batch = symbols.slice(i, i + limit);
34 const batchResults = await this.fetchMultiplePrices(batch);
35
36 for (const [symbol, price] of batchResults) {
37 results.set(symbol, price);
38 }
39 }
40
41 return results;
42 }
43}
44
45// Event-driven order processing
46class OrderProcessor {
47 private queue: Order[] = [];
48 private processing = false;
49
50 async submitOrder(order: Order): Promise<void> {
51 this.queue.push(order);
52
53 if (!this.processing) {
54 await this.processQueue();
55 }
56 }
57
58 private async processQueue(): Promise<void> {
59 this.processing = true;
60
61 while (this.queue.length > 0) {
62 const order = this.queue.shift()!;
63 await this.processOrder(order);
64 }
65
66 this.processing = false;
67 }
68
69 private async processOrder(order: Order): Promise<void> {
70 // Simulate async processing
71 await new Promise(resolve => setTimeout(resolve, 10));
72 console.log(`Processed order ${order.id}`);
73 }
74}
751import { Worker } from 'worker_threads';
2
3interface WorkerMessage {
4 type: 'calculate';
5 data: number[];
6}
7
8class ParallelProcessor {
9 private workers: Worker[] = [];
10
11 constructor(numWorkers: number = 4) {
12 for (let i = 0; i < numWorkers; i++) {
13 const worker = new Worker('./worker.js');
14 this.workers.push(worker);
15 }
16 }
17
18 async processInParallel(data: number[][]): Promise<number[]> {
19 const chunkSize = Math.ceil(data.length / this.workers.length);
20 const promises: Promise<number>[] = [];
21
22 for (let i = 0; i < this.workers.length; i++) {
23 const chunk = data.slice(i * chunkSize, (i + 1) * chunkSize);
24
25 if (chunk.length > 0) {
26 const promise = new Promise<number>((resolve, reject) => {
27 const worker = this.workers[i];
28
29 worker.once('message', (result) => {
30 resolve(result);
31 });
32
33 worker.once('error', reject);
34
35 worker.postMessage({
36 type: 'calculate',
37 data: chunk
38 } as WorkerMessage);
39 });
40
41 promises.push(promise);
42 }
43 }
44
45 return Promise.all(promises);
46 }
47
48 terminate() {
49 this.workers.forEach(worker => worker.terminate());
50 }
51}
52
53// worker.js content:
54/*
55const { parentPort } = require('worker_threads');
56
57parentPort.on('message', (message) => {
58 if (message.type === 'calculate') {
59 const result = heavyCalculation(message.data);
60 parentPort.postMessage(result);
61 }
62});
63
64function heavyCalculation(data) {
65 return data.reduce((sum, val) => sum + val, 0);
66}
67*/
68From our production trading systems:
1Language Threading Async/Await Parallelism
2────────────────────────────────────────────────────
3C++ 2.1M N/A 8.4M (4 cores)
4Rust 2.0M 1.8M 8.1M (4 cores)
5OCaml 1.2M 1.5M 4.8M (4 cores)
6Python 0.3M 0.8M 1.2M (4 cores)
7TypeScript N/A 1.1M 0.9M (4 cores)
81Language Threading Async/Await
2──────────────────────────────────────
3C++ 12 N/A
4Rust 14 18
5OCaml 28 22
6Python 85 45
7TypeScript N/A 38
8Use C++ when:
Use Rust when:
Use OCaml when:
Use Python when:
Use TypeScript when:
After years of concurrent programming in trading:
The best choice depends on your workload, team expertise, and performance requirements.
Master concurrency patterns in your language of choice, but understand the fundamentals work across all languages.
Technical Writer
NordVarg Team is a software engineer at NordVarg specializing in high-performance financial systems and type-safe programming.
Get weekly insights on building high-performance financial systems, latest industry trends, and expert tips delivered straight to your inbox.