A major insurance provider with 10M+ customers was struggling with manual claims processing. Each claim required multiple human reviewers, taking an average of 14 days to process. High error rates led to customer complaints and regulatory scrutiny.
NordVarg designed and implemented an AI-powered claims processing system that automated 85% of claims while maintaining human oversight for complex cases. The system combines computer vision, natural language processing, and fraud detection to deliver accurate, fast decisions.
- 14-day average processing time
- 12% error rate in manual reviews
- $180M annual cost for claims department
- 35% customer satisfaction score
- Manual data entry from paper and digital documents
- Competitors offering instant claims approval
- Regulatory pressure to reduce errors
- Rising operational costs
- Customer churn due to slow processing
- Inability to scale during disaster events
- Legacy systems from 1990s
- Unstructured data (PDFs, photos, handwriting)
- Complex business rules (thousands of edge cases)
- Integration with 50+ data sources
- Regulatory compliance requirements
from typing import List, Dict
import cv2
import pytesseract
from PIL import Image
class DocumentProcessor:
def __init__(self):
self.ocr = pytesseract
self.vision_model = load_vision_model()
async def process_claim_document(
self,
document: bytes,
document_type: str
) -> Dict:
"""Process claim document and extract structured data"""
# Image preprocessing
image = self.preprocess_image(document)
# Classify document type if unknown
if document_type == "unknown":
document_type = await self.classify_document(image)
# Extract text using OCR
text = self.ocr.image_to_string(image)
# Extract structured data based on document type
if document_type == "police_report":
data = self.extract_police_report(text, image)
elif document_type == "medical_report":
data = self.extract_medical_report(text, image)
elif document_type == "damage_photo":
data = await self.analyze_damage_photo(image)
else:
data = self.extract_generic(text)
return {
"document_type": document_type,
"extracted_data": data,
"confidence": self.calculate_confidence(data),
"requires_review": data.get("confidence", 0) < 0.85
}
async def analyze_damage_photo(self, image: np.ndarray) -> Dict:
"""Analyze damage in photos using computer vision"""
# Detect vehicle/property
detections = self.vision_model.detect(image)
# Assess damage severity
damage_score = self.assess_damage(detections)
# Estimate repair cost
estimated_cost = self.estimate_cost(detections, damage_score)
return {
"damage_type": detections.get("damage_type"),
"severity": damage_score,
"estimated_cost": estimated_cost,
"confidence": detections.get("confidence"),
"requires_expert": damage_score > 0.7
}
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.neural_network import MLPClassifier
import numpy as np
class FraudDetector:
def __init__(self):
# Ensemble of models
self.models = {
'random_forest': RandomForestClassifier(n_estimators=100),
'gradient_boost': GradientBoostingClassifier(n_estimators=100),
'neural_net': MLPClassifier(hidden_layers=(100, 50))
}
self.feature_extractor = FeatureExtractor()
def extract_features(self, claim: Dict) -> np.ndarray:
"""Extract features for fraud detection"""
features = []
# Temporal features
features.extend([
claim['time_to_report'], # Time from incident to report
claim['day_of_week'],
claim['hour_of_day'],
claim['days_since_policy_start'],
])
# Claim features
features.extend([
claim['claim_amount'],
claim['claim_amount'] / claim['policy_limit'], # Ratio
len(claim['documents']),
claim['has_police_report'],
claim['has_witnesses'],
])
# Historical features
history = self.get_claim_history(claim['policyholder_id'])
features.extend([
len(history), # Number of previous claims
sum(c['amount'] for c in history), # Total claimed
max([c['amount'] for c in history]) if history else 0,
self.claim_frequency(history), # Claims per year
])
# Network features
network = self.analyze_network(claim)
features.extend([
network['connected_claimants'],
network['shared_addresses'],
network['shared_contacts'],
])
# Document features
features.extend([
claim['document_quality_score'],
claim['has_metadata_anomalies'],
claim['has_image_manipulation'],
])
return np.array(features)
async def predict_fraud(self, claim: Dict) -> Dict:
"""Predict fraud probability using ensemble"""
features = self.extract_features(claim)
# Get predictions from all models
predictions = {}
for name, model in self.models.items():
prob = model.predict_proba(features.reshape(1, -1))[0][1]
predictions[name] = prob
# Ensemble: weighted average
weights = {'random_forest': 0.4, 'gradient_boost': 0.4, 'neural_net': 0.2}
fraud_score = sum(predictions[m] * weights[m] for m in predictions)
# Explain prediction
explanation = self.explain_prediction(features, fraud_score)
return {
'fraud_score': fraud_score,
'is_suspicious': fraud_score > 0.7,
'requires_investigation': fraud_score > 0.5,
'explanation': explanation,
'model_predictions': predictions
}
def explain_prediction(
self,
features: np.ndarray,
fraud_score: float
) -> List[str]:
"""Generate human-readable explanation"""
explanations = []
# Feature importance from random forest
importances = self.models['random_forest'].feature_importances_
top_features = np.argsort(importances)[-5:]
feature_names = [
'time_to_report', 'day_of_week', 'claim_amount',
'previous_claims', 'network_connections', 'document_quality'
]
for idx in top_features:
feature_name = feature_names[idx]
feature_value = features[idx]
if feature_name == 'time_to_report' and feature_value < 1:
explanations.append("Claim reported suspiciously quickly")
elif feature_name == 'previous_claims' and feature_value > 3:
explanations.append(f"High claim frequency: {int(feature_value)} previous claims")
elif feature_name == 'network_connections' and feature_value > 2:
explanations.append("Connected to other suspicious claimants")
return explanations
from typing import Optional
from decimal import Decimal
class ClaimsDecisionEngine:
def __init__(self):
self.fraud_detector = FraudDetector()
self.policy_validator = PolicyValidator()
self.cost_estimator = CostEstimator()
async def evaluate_claim(self, claim: Dict) -> Decision:
"""Evaluate claim and make decision"""
# Step 1: Policy validation
policy_valid = await self.policy_validator.validate(
claim['policy_id'],
claim['incident_date']
)
if not policy_valid.is_valid:
return Decision(
decision='DENIED',
reason=policy_valid.reason,
requires_review=False
)
# Step 2: Fraud check
fraud_check = await self.fraud_detector.predict_fraud(claim)
if fraud_check['fraud_score'] > 0.7:
return Decision(
decision='INVESTIGATION',
reason='High fraud risk',
fraud_score=fraud_check['fraud_score'],
requires_review=True
)
# Step 3: Cost estimation
estimated_cost = await self.cost_estimator.estimate(claim)
claimed_amount = Decimal(str(claim['amount']))
# Check if estimate matches claim
difference_ratio = abs(estimated_cost - claimed_amount) / estimated_cost
if difference_ratio > 0.3: # 30% difference
return Decision(
decision='REVIEW',
reason='Claim amount differs significantly from estimate',
estimated_cost=estimated_cost,
claimed_amount=claimed_amount,
requires_review=True
)
# Step 4: Automated approval criteria
auto_approve = (
claimed_amount <= Decimal('5000') and
fraud_check['fraud_score'] < 0.3 and
difference_ratio < 0.1 and
claim['has_required_documents']
)
if auto_approve:
return Decision(
decision='APPROVED',
amount=claimed_amount,
requires_review=False,
processing_time_seconds=int(time.time() - claim['submitted_at'])
)
# Step 5: Route to human reviewer
return Decision(
decision='REVIEW',
reason='Requires expert evaluation',
estimated_cost=estimated_cost,
fraud_score=fraud_check['fraud_score'],
requires_review=True,
priority=self.calculate_priority(claim, fraud_check)
)
from fastapi import FastAPI, UploadFile, File
from typing import List
import asyncio
app = FastAPI()
@app.post("/api/v1/claims/submit")
async def submit_claim(
policy_id: str,
incident_date: str,
claim_amount: float,
description: str,
documents: List[UploadFile] = File(...)
) -> Dict:
"""Submit new insurance claim"""
# Create claim record
claim = await create_claim({
'policy_id': policy_id,
'incident_date': incident_date,
'amount': claim_amount,
'description': description
})
# Process documents in parallel
document_tasks = [
process_document(doc, claim['id'])
for doc in documents
]
processed_docs = await asyncio.gather(*document_tasks)
# Evaluate claim
decision = await decision_engine.evaluate_claim({
**claim,
'documents': processed_docs
})
# Update claim with decision
await update_claim(claim['id'], decision)
# Notify customer
await send_notification(
claim['policy_holder_email'],
decision
)
return {
'claim_id': claim['id'],
'decision': decision['decision'],
'estimated_time': decision.get('estimated_resolution_time'),
'next_steps': decision.get('next_steps')
}
@app.get("/api/v1/claims/{claim_id}/status")
async def get_claim_status(claim_id: str) -> Dict:
"""Get current claim status"""
claim = await get_claim(claim_id)
return {
'claim_id': claim_id,
'status': claim['status'],
'decision': claim.get('decision'),
'amount': claim.get('approved_amount'),
'timeline': claim['timeline'],
'documents_required': claim.get('missing_documents', [])
}
| Claim Type | Before | After | Improvement |
|---|
| Simple Auto | 14 days | 45 min | 99.8% faster |
| Complex Auto | 21 days | 4 hours | 98.8% faster |
| Property | 18 days | 2 hours | 99.3% faster |
| Medical | 25 days | 6 hours | 99.0% faster |
| Average | 14 days | 2 hours | 99.4% faster |
- Error rate decreased from 12% to 0.8%
- Fraud detection accuracy: 94% (vs 65% manual)
- False positives reduced by 80%
- Customer satisfaction increased from 35% to 87%
- $120M annual savings in operational costs
- 85% of claims fully automated
- $40M fraud prevented in first year
- 2.5x increase in claims processing capacity
- 60% reduction in staffing needs
- Real-time status updates via mobile app
- Instant approval for 70% of claims
- Same-day payment for approved claims
- Transparency in decision-making
- Self-service portal for document submission
┌─────────────────────────────────────┐
│ Data Ingestion (Apache Airflow) │
│ - Claims data │
│ - Historical data │
│ - External data sources │
└──────────────┬──────────────────────┘
↓
┌─────────────────────────────────────┐
│ Feature Engineering │
│ - Temporal features │
│ - Network analysis │
│ - Document analysis │
└──────────────┬──────────────────────┘
↓
┌─────────────────────────────────────┐
│ Model Training (TensorFlow) │
│ - Fraud detection │
│ - Cost estimation │
│ - Document classification │
└──────────────┬──────────────────────┘
↓
┌─────────────────────────────────────┐
│ Model Serving (FastAPI) │
│ - REST API │
│ - Real-time predictions │
│ - A/B testing │
└─────────────────────────────────────┘
Machine Learning
- Python - Primary language
- TensorFlow - Deep learning
- scikit-learn - Classical ML
- OpenCV - Computer vision
- spaCy - NLP
Data Pipeline
- Apache Airflow - Workflow orchestration
- PostgreSQL - Primary database
- Redis - Caching
- S3 - Document storage
- Kafka - Event streaming
API & Frontend
- FastAPI - Backend API
- React - Web interface
- React Native - Mobile apps
- TypeScript - Type safety
Problem: Historical data had inconsistencies, missing values
Solution: Data cleaning pipeline, imputation strategies, validation rules
Result: 95% data quality score achieved
Problem: Initial model discriminated against certain demographics
Solution: Bias detection, fairness constraints, diverse training data
Result: Passed fairness audit, no demographic disparities
Problem: Regulators required explanation for automated decisions
Solution: LIME/SHAP explanations, audit logs, human-in-the-loop for edge cases
Result: Full regulatory compliance achieved
"The AI-powered claims system has transformed our operations. We're now processing claims in hours instead of weeks, with higher accuracy than ever before. Customer satisfaction has more than doubled, and we're saving over $100M annually. NordVarg's expertise in both insurance and machine learning was critical to this success."
— Chief Operations Officer, Major Insurance Provider
- Video claims - Submit claims via video recording
- IoT integration - Telematics data for auto claims
- Predictive analytics - Identify high-risk policyholders
- Blockchain verification - Immutable audit trail
- Multi-language support - Global expansion
- Active learning - Continuously improve models
- Reinforcement learning - Optimize decision policies
- Transfer learning - Apply to new insurance products
- Federated learning - Privacy-preserving training
- AI augments humans - Best results with human-in-the-loop for complex cases
- Start with data - Data quality determines ML success
- Explainability matters - Especially in regulated industries
- Incremental rollout - De-risk deployment with gradual adoption
- Monitor continuously - ML models degrade without monitoring
- Measure impact - Track business metrics, not just ML metrics
Looking to automate complex business processes with AI? Get in touch to discuss how we can help transform your operations.
Project Duration: 6 months
Team Size: 8 engineers (4 ML, 2 backend, 2 frontend)
Technologies: Python, TensorFlow, PostgreSQL, React
Industry: Insurance
Location: United States