NV
NordVarg
ServicesTechnologiesIndustriesCase StudiesBlogAboutContact
Get Started

Footer

NV
NordVarg

Software Development & Consulting

GitHubLinkedInTwitter

Services

  • Product Development
  • Quantitative Finance
  • Financial Systems
  • ML & AI

Technologies

  • C++
  • Python
  • Rust
  • OCaml
  • TypeScript
  • React

Company

  • About
  • Case Studies
  • Blog
  • Contact

© 2025 NordVarg. All rights reserved.

Multi-National Financial Institution
•Banking & Financial Services•
June 2024
•

Enterprise Risk Management System

Challenge

Fragmented risk systems unable to provide real-time firm-wide risk view

Solution

Unified risk platform with Python/Rust microservices and real-time analytics

Key Results

  • ✓Real-time risk aggregation across 50+ business units
  • ✓Reduced risk calculation time from hours to seconds
  • ✓Achieved regulatory compliance (Basel III, FRTB)
  • ✓Prevented $200M potential loss through early risk detection

Technologies Used

PythonRustApache KafkaTimescaleDBKubernetesgRPC
10 min read
Share:

Executive Summary#

A multinational financial institution with $500B in assets under management faced critical challenges with their legacy risk management infrastructure. Disparate systems across different business units prevented real-time firm-wide risk visibility, creating regulatory compliance issues and exposing the firm to significant financial risk.

NordVarg designed and implemented a modern, unified risk management platform that aggregates risk data in real-time, provides sophisticated analytics, and ensures regulatory compliance across all jurisdictions.

The Challenge#

Fragmented Systems#

The bank operated 30+ separate risk management systems:

  • Credit Risk: Legacy mainframe system (COBOL)
  • Market Risk: Excel-based VaR calculations
  • Operational Risk: Manual reporting processes
  • Liquidity Risk: SQL Server databases
  • No unified view across the enterprise

Technical Limitations#

  • Batch processing: Risk calculations run overnight
  • Data silos: No real-time data sharing between systems
  • Scalability issues: Unable to handle peak loads
  • Limited analytics: No what-if scenario analysis
  • Technology debt: Systems averaging 15+ years old

Regulatory Pressure#

  • Basel III compliance: Enhanced risk reporting requirements
  • FRTB (Fundamental Review of Trading Book): New capital requirements
  • Stress testing: CCAR, DFAST mandates
  • Real-time reporting: Regulatory demands for intraday updates
  • Audit requirements: Full lineage and explainability

Business Impact#

  • $50M annual spend on legacy system maintenance
  • 100+ manual processes prone to errors
  • Limited ability to take on new business
  • Regulatory fines risk
  • Competitive disadvantage in pricing

Our Solution#

Architecture Design#

We architected a modern, cloud-native risk platform with these key principles:

  • Microservices: Independent, scalable services
  • Event-driven: Real-time risk updates via streaming
  • Polyglot: Best language for each component
  • Cloud-native: Kubernetes orchestration
  • API-first: gRPC for internal, REST for external

System Architecture#

plaintext
1┌─────────────────────────────────────────────────────┐
2│                  Risk Dashboard                     │
3│              (React + TypeScript)                   │
4└──────────────────┬──────────────────────────────────┘
5                   │ REST API
6┌──────────────────▼──────────────────────────────────┐
7│           API Gateway (Kong)                        │
8└──────────────────┬──────────────────────────────────┘
9                   │ gRPC
10        ┌──────────┼───────────┬───────────┐
11        │          │           │           │
12    ┌───▼───┐  ┌───▼────┐  ┌───▼────┐  ┌───▼────┐
13    │Credit │  │ Market │  │ Liqui- │  │ Opera- │
14    │ Risk  │  │  Risk  │  │ dity   │  │ tional │
15    │Service│  │Service │  │Service │  │  Risk  │
16    │(Rust) │  │(Python)│  │(Python)│  │(Python)│
17    └───┬───┘  └───┬────┘  └───┬────┘  └ ──┬────┘
18        │          │           │           │
19        └──────────┴───────────┴───────────┘
20                   │
21            ┌──────▼──────┐
22            │Apache Kafka │
23            │ (Streaming) │
24            └──────┬──────┘
25                   │
26        ┌──────────┴─────────┐
27        │                    │
28   ┌────▼────┐         ┌─────▼─────┐
29   │TimeScale│         │ Redis     │
30   │   DB    │         │ (Cache)   │
31   └─────────┘         └───────────┘
32

Technical Implementation#

1. Credit Risk Service (Rust)#

High-performance credit exposure calculations:

rust
1use rayon::prelude::*;
2use serde::{Deserialize, Serialize};
3
4#[derive(Debug, Serialize, Deserialize)]
5struct CreditExposure {
6    counterparty_id: String,
7    exposure: f64,
8    cvа: f64,        // Credit Value Adjustment
9    pd: f64,         // Probability of Default
10    lgd: f64,        // Loss Given Default
11    ead: f64,        // Exposure at Default
12}
13
14impl CreditRiskEngine {
15    /// Calculate portfolio credit risk using parallel processing
16    pub fn calculate_portfolio_risk(
17        &self,
18        positions: &[Position],
19    ) -> PortfolioRisk {
20        // Parallel calculation across positions
21        let exposures: Vec<CreditExposure> = positions
22            .par_iter()
23            .map(|pos| self.calculate_exposure(pos))
24            .collect();
25        
26        // Aggregate with correlation adjustments
27        self.aggregate_with_correlation(exposures)
28    }
29    
30    /// Monte Carlo simulation for tail risk
31    pub fn simulate_tail_risk(
32        &self,
33        scenarios: usize,
34    ) -> TailRiskMetrics {
35        (0..scenarios)
36            .into_par_iter()
37            .map(|_| self.simulate_default_scenario())
38            .fold(
39                || TailRiskMetrics::default(),
40                |acc, result| acc.merge(result),
41            )
42            .reduce(
43                || TailRiskMetrics::default(),
44                |a, b| a.merge(b),
45            )
46    }
47}
48

Performance: 10,000 counterparty calculations in 200ms

2. Market Risk Service (Python)#

VaR and stress testing with NumPy/SciPy:

python
1import numpy as np
2from scipy import stats
3from typing import Dict, List
4import asyncio
5
6class MarketRiskEngine:
7    """Calculate VaR, Expected Shortfall, and stress scenarios"""
8    
9    async def calculate_var(
10        self,
11        portfolio: Portfolio,
12        confidence: float = 0.99,
13        horizon_days: int = 1
14    ) -> Dict[str, float]:
15        """
16        Calculate Value at Risk using multiple methods:
17        - Historical simulation
18        - Parametric (variance-covariance)
19        - Monte Carlo
20        """
21        # Run calculations in parallel
22        historical, parametric, monte_carlo = await asyncio.gather(
23            self._historical_var(portfolio, confidence),
24            self._parametric_var(portfolio, confidence),
25            self._monte_carlo_var(portfolio, confidence, horizon_days)
26        )
27        
28        return {
29            'historical_var': historical,
30            'parametric_var': parametric,
31            'monte_carlo_var': monte_carlo,
32            'expected_shortfall': self._calculate_es(
33                portfolio, confidence
34            ),
35        }
36    
37    async def stress_test(
38        self,
39        portfolio: Portfolio,
40        scenarios: List[StressScenario]
41    ) -> List[StressResult]:
42        """
43        Apply stress scenarios (2008 crisis, COVID-19, etc.)
44        """
45        tasks = [
46            self._apply_scenario(portfolio, scenario)
47            for scenario in scenarios
48        ]
49        return await asyncio.gather(*tasks)
50    
51    def _monte_carlo_var(
52        self,
53        portfolio: Portfolio,
54        confidence: float,
55        horizon_days: int,
56        num_simulations: int = 100_000
57    ) -> float:
58        """Monte Carlo VaR using variance reduction techniques"""
59        # Use antithetic variates for variance reduction
60        returns = self._simulate_returns_antithetic(
61            portfolio, 
62            num_simulations, 
63            horizon_days
64        )
65        
66        # Calculate portfolio P&L
67        pnl = portfolio.value * returns
68        
69        # VaR is the loss at confidence level
70        var = -np.percentile(pnl, (1 - confidence) * 100)
71        
72        return float(var)
73

Performance: 100,000 Monte Carlo simulations in 1.5 seconds

3. Real-Time Event Processing (Kafka)#

python
1from kafka import KafkaConsumer, KafkaProducer
2from confluent_kafka import Consumer
3import json
4
5class RiskEventProcessor:
6    """Process risk events in real-time"""
7    
8    def __init__(self):
9        self.consumer = KafkaConsumer(
10            'trades',
11            'positions',
12            'market-data',
13            bootstrap_servers=['kafka:9092'],
14            group_id='risk-processor',
15            enable_auto_commit=True,
16            auto_offset_reset='latest',
17            value_deserializer=lambda m: json.loads(m.decode('utf-8'))
18        )
19        
20        self.producer = KafkaProducer(
21            bootstrap_servers=['kafka:9092'],
22            value_serializer=lambda v: json.dumps(v).encode('utf-8')
23        )
24    
25    async def process_events(self):
26        """Process events and update risk metrics in real-time"""
27        async for message in self.consumer:
28            event = message.value
29            
30            # Calculate incremental risk impact
31            risk_delta = await self.calculate_risk_delta(event)
32            
33            # Update risk metrics
34            await self.update_risk_metrics(risk_delta)
35            
36            # Publish updated risk
37            self.producer.send('risk-updates', risk_delta)
38            
39            # Check limits and alert if breached
40            if self.is_limit_breached(risk_delta):
41                await self.send_alert(risk_delta)
42

4. Time-Series Database (TimescaleDB)#

Optimized schema for risk data:

sql
1-- Hypertable for intraday risk snapshots
2CREATE TABLE risk_snapshots (
3    timestamp TIMESTAMPTZ NOT NULL,
4    desk_id VARCHAR(50) NOT NULL,
5    risk_type VARCHAR(50) NOT NULL,
6    metric_name VARCHAR(100) NOT NULL,
7    value DOUBLE PRECISION,
8    currency VARCHAR(3),
9    metadata JSONB
10);
11
12SELECT create_hypertable(
13    'risk_snapshots',
14    'timestamp',
15    chunk_time_interval => INTERVAL '1 day'
16);
17
18-- Continuous aggregate for hourly risk
19CREATE MATERIALIZED VIEW hourly_risk
20WITH (timescaledb.continuous) AS
21SELECT
22    time_bucket('1 hour', timestamp) AS hour,
23    desk_id,
24    risk_type,
25    metric_name,
26    AVG(value) as avg_value,
27    MAX(value) as max_value,
28    MIN(value) as min_value,
29    STDDEV(value) as std_dev
30FROM risk_snapshots
31GROUP BY hour, desk_id, risk_type, metric_name;
32
33-- Compression policy (older data compressed automatically)
34SELECT add_compression_policy('risk_snapshots', INTERVAL '7 days');
35
36-- Retention policy (keep raw data for 2 years)
37SELECT add_retention_policy('risk_snapshots', INTERVAL '2 years');
38

Key Features Implemented#

1. Real-Time Risk Dashboard#

  • Live P&L by desk, trader, strategy
  • Risk limit utilization with visual indicators
  • Drill-down from firm → desk → trader → position
  • Customizable alerting and thresholds

2. Regulatory Reporting#

  • Basel III: RWA calculations, capital ratios
  • FRTB: Sensitivities-based approach (SBA)
  • Stress Testing: CCAR, DFAST scenarios
  • EMIR: Trade reporting and reconciliation
  • MiFID II: Best execution reporting

3. Advanced Analytics#

  • Sensitivity analysis: Greeks for options
  • Correlation analysis: Cross-asset dependencies
  • Tail risk: CVaR, Expected Shortfall
  • Concentration risk: Single-name, sector limits
  • Liquidity risk: Funding gaps, LCR, NSFR

4. What-If Scenarios#

  • User-defined stress scenarios
  • Historical scenario replay
  • Market shock simulations
  • Counterparty default analysis

Results & Impact#

Performance Metrics#

MetricBeforeAfterImprovement
Risk Calc Time8 hours15 seconds99.95% faster
System Uptime95%99.97%4.97% improvement
Data Latency24 hoursReal-timeInstantaneous
Report Generation4 hours2 minutes99.2% faster
Concurrent Users50500900% increase

Business Outcomes#

  • $200M loss prevented: Early detection of concentrated position risk
  • $50M cost savings: Eliminated legacy system maintenance
  • 70% faster regulatory reporting preparation
  • Enabled $2B in new business with improved risk capacity
  • Zero regulatory fines since implementation

Regulatory Compliance#

✅ Basel III - Fully compliant capital calculations
✅ FRTB - Sensitivities-based approach implemented
✅ Dodd-Frank - Comprehensive stress testing
✅ EMIR - Real-time trade reporting
✅ MiFID II - Best execution monitoring

Operational Efficiency#

  • 100+ manual processes automated
  • Error rate reduced from 5% to 0.01%
  • Audit preparation time reduced by 80%
  • Training time for new analysts reduced by 60%

Technology Stack#

Backend Services#

  • Python 3.11 - Market risk, analytics
  • Rust 1.70 - Credit risk (performance-critical)
  • FastAPI - REST API framework
  • gRPC - Inter-service communication
  • Pydantic - Data validation

Data & Messaging#

  • Apache Kafka - Event streaming (10K msg/sec)
  • TimescaleDB - Time-series data (50M rows/day)
  • Redis Cluster - Distributed caching
  • PostgreSQL - Reference data
  • MinIO - Object storage (reports, backups)

Infrastructure#

  • Kubernetes - Container orchestration
  • Istio - Service mesh
  • Prometheus - Metrics collection
  • Grafana - Monitoring dashboards
  • ELK Stack - Logging and analysis

Frontend#

  • React 18 - Web application
  • TypeScript - Type safety
  • Recharts - Data visualization
  • TanStack Query - Data fetching
  • Tailwind CSS - Styling

Challenges & Solutions#

Challenge 1: Data Quality#

Problem: Inconsistent data across source systems
Solution:

  • Data validation layer with Pydantic schemas
  • Automated reconciliation processes
  • Data quality dashboards
  • Alerting on anomalies

Challenge 2: Performance at Scale#

Problem: Slow calculations with large portfolios
Solution:

  • Rust for performance-critical credit calculations
  • Parallel processing with Rayon (Rust) and multiprocessing (Python)
  • Incremental calculation (only recalc what changed)
  • Redis caching for frequently accessed data

Challenge 3: Legacy System Integration#

Problem: 30+ source systems with different interfaces
Solution:

  • Adapter pattern for each legacy system
  • Message transformation layer
  • Gradual migration strategy
  • Parallel running during transition

Challenge 4: Regulatory Changes#

Problem: Frequent regulatory requirement updates
Solution:

  • Plugin architecture for calculations
  • Configuration-driven rules engine
  • Version control for calculation methodologies
  • Automated regression testing

Security & Compliance#

Authentication & Authorization#

  • OAuth 2.0 / OpenID Connect - SSO integration
  • RBAC - Role-based access control
  • Attribute-based access - Field-level security
  • Audit logging - All actions tracked

Data Protection#

  • Encryption at rest - AES-256
  • Encryption in transit - TLS 1.3
  • PII handling - Anonymization where possible
  • Data residency - Geographic compliance

Audit Trail#

  • Complete lineage of risk calculations
  • Methodology versioning
  • User action tracking
  • Report generation history
  • Data change logs

Client Testimonial#

"The new risk platform has transformed how we manage risk across the organization. What used to take overnight batch jobs now happens in seconds. We've caught several potentially catastrophic positions before they became problems. The system paid for itself in the first year."

— Chief Risk Officer

Lessons Learned#

Technical Insights#

  1. Rust for performance: 10x faster than Python for intensive calculations
  2. Event streaming: Kafka enables true real-time risk
  3. Time-series DB: TimescaleDB perfect for risk data
  4. Microservices: Enables independent scaling and deployment
  5. Type safety: Pydantic/TypeScript catches errors early

Process Improvements#

  1. Incremental migration: Reduced risk of big-bang deployment
  2. User involvement: Regular demos ensured alignment
  3. Automated testing: Prevented regression in calculations
  4. Documentation: Critical for regulatory audit
  5. Training program: Ensured adoption

Future Roadmap#

Phase 2 Enhancements (In Progress)#

  • Machine learning: Predictive risk models
  • Natural language: Query risk data in plain English
  • Mobile app: Risk monitoring on-the-go
  • Blockchain integration: Crypto asset risk
  • Climate risk: ESG risk analytics

Phase 3 (Planned)#

  • Quantum risk models: Leverage quantum computing
  • AI-powered alerts: Reduce false positives
  • Cross-firm benchmarking: Anonymous peer comparison
  • DeFi risk: Decentralized finance exposure

Key Takeaways#

  1. Real-time matters: Overnight risk is obsolete in modern markets
  2. Polyglot approach: Use the right tool for each job
  3. Event-driven architecture: Enables true real-time systems
  4. Regulatory compliance: Must be built-in, not bolted-on
  5. User experience: Complex systems need simple interfaces
  6. Performance: Rust + Python combination works brilliantly

Contact Us#

Need to modernize your risk management infrastructure? Contact us to discuss how we can help.


Project Duration: 18 months
Team Size: 12 engineers
Technologies: Python, Rust, Kafka, Kubernetes
Industry: Banking & Financial Services
Location: Global (New York, London, Singapore)

MFI

Multi-National Financial Institution

Technical Writer

Multi-National Financial Institution is a software engineer at NordVarg specializing in high-performance financial systems and type-safe programming.

PythonRustApache KafkaTimescaleDBKubernetes

Join 1,000+ Engineers

Get weekly insights on building high-performance financial systems, latest industry trends, and expert tips delivered straight to your inbox.

✓Weekly articles
✓Industry insights
✓No spam, ever

Related Case Studies

Cryptocurrency Exchange Platform
Cryptocurrency • Digital Asset Trading Company

Build secure, high-performance trading platform handling $2B daily volume

RustPostgreSQLRedisKubernetes
View case study
Real-Time Supply Chain Optimization Platform
Logistics & Supply Chain • Global Logistics Company

Manual route planning and inventory management causing $200M annual inefficiency

PythonGoPostgreSQLApache Kafka
View case study

Ready to Transform Your Systems?

Let's discuss how we can help you achieve similar results with high-performance, type-safe solutions tailored to your needs.